Problem Sheet 1

Problem 1

Fix $n \geq 1$ and $\zeta \in \mathbb{C}$, a primitive n-th root of unity. Let $\mathbb{Q}(\zeta) \subseteq \mathbb{C}$ be the subfield generated by ζ. It is a splitting field of $T^{n}-1$, hence Galois; denote by $G:=\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ its Galois group.
(a) Show that for every $\sigma \in G$, there is a unique $e(\sigma) \in(\mathbb{Z} / n \mathbb{Z})^{\times}$such that $\sigma(\zeta)=\zeta^{e(\sigma)}$ and that the assignment $\sigma \mapsto e(\sigma)$ defines a group isomorphism

$$
G \stackrel{\cong}{\cong}(\mathbb{Z} / n \mathbb{Z})^{\times} .
$$

(b) Determine the Galois group and all intermediate fields of $\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}$, where ζ_{8} is a primitive 8 -th root of unity.

Problem 2

Fix $n \geq 1$ and let K be a field that contains a primitive n-th root of unity ζ. Let L / K be a Galois extension with Galois group G cyclic of order n. The following will show that L has the simple form $K(\sqrt[n]{a})$ for some $a \in K^{\times}$.
(a) Fix a generator $\sigma \in G$ and view it as an endomorphism of the K-vector space L. Show that its only possible eigenvalues are the n-th roots of unity $\zeta^{i}, i \in \mathbb{Z} / n \mathbb{Z}$, and that L fully decomposes into eigenspaces,

$$
L=\bigoplus_{i \in \mathbb{Z} / n \mathbb{Z}} L_{i}
$$

where $L_{i}=\left\{\ell \mid \sigma(\ell)=\zeta^{i} \ell\right\}$. Prove that $L_{i} L_{j} \subseteq L_{i+j}$ holds.
(b) Show that $\operatorname{dim} L_{i}=1$ for all i. Conclude that there is an element $0 \neq \alpha \in L$ such that $\sigma(\alpha)=\zeta \alpha$, that such an element generates L and that it satisfies $\alpha^{n} \in K$.

Problem 3

An integral domain A is euclidean if there is a degree map $\operatorname{deg}: A \backslash\{0\} \longrightarrow \mathbb{Z}_{\geq 0}$ such that for all $x, y \in A, y \neq 0$ there are $q, r \in A$ such that

$$
x=q y+r \quad \text { with } r=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(y)
$$

(a) Show that a euclidean ring is a PID (principal ideal domain).
(b) Show that $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$ are euclidean.

